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SUMMARY 
A new problem in hydrodynamic stability is investigated. 

Given two contiguous viscous incompressible fluids, the fluid 
on one side of the plane interface being bounded by a solid wall 
and that on the other side being unbounded, the problem is to 
determine the hydrodynamic stability when the fluids are in 
steady unidirectional motion, parallel to the interface, with 
uniform rate of shear in each fluid. The mathematical analysis, 
based on small disturbance theory, leads to a characteristic value 
problem in a system of two linear ordinary differential equations. 
The essential dimensionless parameters that appear in the present 
problem are the viscosity ratio m, the density ratio r ,  the Froude 
number F, and the Weber number W, as well as the parameters a, 
R (which is proportional here to the flow rate of the inner fluid) 
and c, that occur in the study of hydrodynamic stability of a single 
fluid. The results obtained are presented graphically for most 
fluid combinations of possible interest. The neutral stability 
curve in the (a ,  R)-plane is single-looped, as in the boundary layer 
case. The calculated critical Reynolds numbers are higher than 
the values observed in liquid film cooling experiments. (In these 
experiments, the outer fluid is usually a turbulent gas, in which 
the thickness of the laminar sublayer is of the same order of 
magnitude as the liquid film thickness.) General agreement 
between the theoretical and experimental values exists for all 
critical quantities except the Reynolds number. Gravity and 
surface tension are found here to have a destabilizing effect on the 
flow, in agreement with experimental evidence. Semi-infinite 
plane Couette flow is a special case of the present problem and 
the known stability of this flow is recovered. The linear velocity 
profile of two adjacent fluids with the same viscosity, but different 
densities, is shown to be unstable for high enough Reynolds 
numbers. The Reynolds stress distribution for a neutral 
oscillation in the general case is discussed qualitatively. 

I. INTRODUCTION 
The interest in the present problem stems from the desire to understand 

what happens when a liquid film flows over a flat surface, dragged along 
by a high speed gas. For certain liquid flow rates, the film surface becomes 
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wavy, and detached parcels of liquid from the main body are entrained by 
the gas and carried downstream. This situation arises, among numerous 
engineering applications, in connection with film cooling of a solid boundary, 
as reported by Knuth (1954). 

A classical problem related to the one mentioned above is the generation 
of ocean waves by wind. This problem has recently been investigated 
theoretically by Lock (1954), who was the first to have included in the 
analysis all the.physica1 properties of the air and water. His calculations 
are 'incomplete, and the results obtained are quite different from the usual 
single-fluid results. 

The problem of the stability of stratified motion of different fluids has 
been studied by Taylor (1931) and Goldstein (1931), who did not include 
viscosity in their analyses. Taylor investigated continuous and dis- 
continuous density and velocity distributions. Goldstein treated similar 
problems, his investigations being a generalization to heterogeneous 
stratified fluids of Rayleigh's (1887) work on the homogeneous case. 

Y, = 0 
r,= 1 
Y, : c3 

Y 

Figure 1. Undisturbed velocity profile to be investigated. 

The problem of liquid film stability has been investigated experimentally 
by Kinney, Abramson & Sloop (1952) and by Knuth (1954), who were 
concerned with liquid film cooling applications where the gas stream was 
always turbulent. York, Stubbs & Teck (1953) studied the mechanism 
of disintegration of liquid sheets experimentally, and they proposed an 
inviscid model based on an extension of Lamb's work (1932). 

The aim of this investigation is to solve the hydrodynamic stability 
problem when two viscous incompressible fluids, in two-dimensional, 
laminar, uniform shearing motion (figure 1) are perturbed by a small 
arbitrary disturbance. One of the fluids, from now on called the liquid, 
is bounded in the direction normal to the flow by a solid wall and by the 
second fluid, called the gas, of semi-infinite extent in the direction normal 
t o  the flow. 
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By ' solving the problem ' is meant finding the relationships satisfied 
b y  certain parameters when neutral stability exists. This implies that a 
neutral-stability hypersurface, whose coordinates are the physical variables 
involved, could be constructed that would separate regions of stability and 
instability. In  other words, if the physical properties of the fluids are 
given, we wish to determine the minimum critical Reynolds number* at 
which instability begins. 

It will be realized from the above remarks that the chosen model is an 
idealization of the physical situation. The most serious criticism is that 
the gas motion, in the actual case, is turbulent in most cases of interest, 
and the velocity profile is not a linear function of the distance away from 
the wall. Some justification for the present approach lies in the fact that, 
at least in the laminar sublayer of the turbulent flow, the gas is laminar 
with an almost linear velocity profile. (The ratio of gas laminar sublayer 
thickness to liquid film thickness in existing experiments is of the order 
bf unity.) There is still one other reason for the approach used (besides the 
obvious one of greater tractability when the turbulence is ignored), for 
it has been definitely shown by Zondek & Thomas (1953) that semi-infinite 
plane Couette flow is always stable. Now, this situation is a special case 
of the present model, and it is interesting in this connection to know how 
a discontinuity in density or viscosity affects the stability of uniform shearing 
motion. 

11. THE BOUNDARY VALUE PROBLEM AND ITS SOLUTION 

1. The Orr-Sommerfeld dzyerential equation and its general solution for plane 

The task now is to formulate mathematically the problem of stability 
of two-dimensional laminar motion. This has been done in the past by 
numerous authors (e.g. Lin 1945). For the sake of completeness, however, 
a brief description of the derivation of the disturbance equation will be 
given here. 

Let all coordinates and velocities be made dimensionless by the use 
of a reference length 6, and a reference velocity u2. Consider a basic flow 
in the x-direction with a velocity profile U(y). The Navier-Stokes and 
continuity equations in the xy-plane can be perturbed by assuming the 
velocities in the x- and y-directions and the pressure to have the form 

where the lower-case symbols indicate small quantities, and t is the 
dimensionless time (i.e. timex 02/6). The introduction of (1) into the 
Navier-Stokes equations leads to two linear partial differential equations 
drom which the pressure can be eliminated by cross differentiation and 
subtraction. The result is a linear partial differential equation containing 

*Defined, for given flow physical properties, as the smallest value of R for 
which incipient disturbances will become amplified, i.e. the smallest value of R of 
the neutral stability curve in the (tl, R)-plane. 

F.M. 2 A  

Couette $ow 

U(Y)+U(X,Y, t ) ,  %y, t ) ,  P+p(x,y, t ) ,  (1)  
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u and a as the dependent variables, with x, y and t as the independent 
variables. The equation of continuity guarantees the existence of a stream 
function $(x,y, t), such that 

&!=- a* z,= -2  
aY ' a x ?  

and which, when used in the differential equation last mentioned, reduces 
it to a linear partial differential equation in terms of only one dependent 
variable $(x,y,t). The fact that this equation is linear is very important, 
since this means that superposition of solutions is allowable. This implies 
that if any arbitrary disturbance is decomposed into its Fourier components, 
it is then sufficient to solve the problem for one general sinusoidal oscillation. 
After the solution is obtained, it will be necessary to consider all possible 
frequencies and see how they affect the behaviour of the solution. 

In  order to separate the variables in the partial differential equation 
for #, let 

where a is the wave number, assumed positive without any loss of generality, 
and c is the complex wave velocity which may be expressed as 

where c, is the wave velocity and ci allows for amplification of disturbances 
if ci > 0, damping of disturbances if ci < 0, and neutral disturbances 
if c, = 0. The partial differential equation for ij then reduces to the 
Orr- Sommerfeld equation 

I&, y ,  t )  = +(y)eia(Z+t), (4 

c = c,+zci, (3) 

2 
( U -  ~)(qb" - a") - U"# = - a (+*v - Za2qb" + a"), (4) 

where the primes indicate derivatives with respect to y ,  and R is the 
Reynolds number p8D2/p (p  is the density of the fluid and p the viscosity). 

If the velocity profile of the undisturbed flow is a linear function of y ,  
as in the case of interest, U" = 0, and (4) becomes 

which is a linear fourth-order total differential equation in the complex 
y-plane. As first pointed out by Lin (1945), equation ( 5 )  has four linearly 
independent solutions, which are analytic functions of y and entire functions 
of the parameters c, a and aR. We will now solve (5). A transformation 
which was first pointed out by Orr (1906) and later independently by 
Sommerfeld (1909) is 

which when used in (5) yields 

Now, let 

qb"(Y)-a2+(Y) = 5(r), (6) 

(7) 5" - [iaR( U -  c)  + a2]5 = 0. 

so that (7) can be written as 
h"(z)+zh(z) = 0, (9) 
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which is the so-called Stokes equation. The solution can be obtained in 
terms of contour integrals by using Laplace’s method (Morse & Feshbach 
1953, pp. 582-585). The result is 

h(z) = 2k3 hl(z) + Zk4 h,(z), (10) 
where the factor 2 is introduced for convenience in later calculations, 
& and k4 are arbitrary constants, and 

h,(z) = k exp(zt ++t3) dt, k = (12)1/6e-h/6, (11) 
i7r L1 

M4 = - 5 ~~ L* exp(zt+Qt3) dt, k* = (12)1/6e-*’e, (12) 

in which L, and L, are the contours of integration shown in figure 2, 
k, and h2 are entire functions of z, and t is a complex variable of integration. 

t-PLANE 

I 03ei9  

I \  f 

Figure 2. Paths for contour integrals in the solution of Stokes’ equation. 

The functions h,(z) and h2(z) may also be written in terms of Hankel functions 
of order one-third as 

h , ( ~ )  = (623’2)1’3H~f~(~23/2), hz(2) = (2 2$/2 ) 1/3H(2) 1 / 3 ( ~ ~  2 312 ). (13) 
It will be recalled (see, for instance, Copson (1935)) that the Hankel functions 
are of oscillatory nature, the function of the first kind, being damped 
exponentially as 1 &z3/2\ becomes large, while Hi72 increases exponentially 
under the same conditions. 

From (8) and (10) we have 

5(r) = 2k3 M Y )  + 2k4 52(Y)9 

where Cl(Y) = hl(4 ,  5 2 w  = h2(z)1 

which when inserted in (6) gives 

The complete solution of (5) is then 
4%) - Cr2+(Y) = 2k3 51(A + 2k4 t;2(Y>. 

+(r) = R l  M Y )  + A2 bdr) 4- A3 43b) + k4 MY), 



3 48 S.  Feldman 

where 7 

i is a variable of integration and should not be confused with the notation 
used to denote time. 5,  and c2 are given by (14). 

2. DzfJerential equations for the present problem 
When the phenomenon under investigation involves the stratified 

motion of two fluids, an equation like ( 5 )  must be used for each fluid, with 
the proper boundary conditions at the interface. Let S and u2 as used to 
render (5) dimensionless be, respectively, the height of the liquid sheet 
and its surface velocity. Lower-case and capital Greek letters will represent 
conditions in the liquid and gas respectively, and the subscripts 1 and g 
will denote quantities evaluated in the liquid and in the gas. We then 
choose 

+ = +(y)eMs-Ct) = @(y)eids-W (18) 

as our representation of the disturbance stream function in the liquid 
and gas respectively. The disturbance velocities then become 

while the corresponding Orr-Sommerfeld equations are 

z 
( U ,  - c)(+" - u") = - - (Q'- 2U2f + a4+), (0 < y < l), (20) 

( u, - c)(@" - u2@) = - -(@i"-2u2@"+u4@), (1 < y  < m), (21) 

Z R l  

aRLl 

i 

where 

Equating the shear stresses at the interface of the basic flow gives 

(23) 

(0 < y  < 11, (24) 

u, = 1+ Pl -(y-1). 
Ps 

The solutions of (20) and (21) can now be written, from (16), as 

+(Y) = R,  M Y )  + h2 +2(Y) + k3 M Y )  + k4 +4(Y), 

@(Y) = ~l@l(j)+-K,@>,(Y)+K,@,(Y)+-4~4(Y),  (1 GY G a)), (25) 
where the 4's are given by (17), and the 0's  can also be obtained from the 
same equation by using the appropriate value of z in the gas, given by (8). 
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3 .  Boundary conditions 

variables. 

the wall, interface and infinity, i.e. y1  = 0, y 2  = 1 and y3  = CO. 

must vanish ; i.e. 

The boundary conditions will be written in terms of dimensionless. 

Let subscripts 1 , 2  and 3 used with the coordinate y denote, respectively,. 

A t  the wall ( y  = y 1  = O ) ,  both components of the disturbance velocities 

VdYd = 0, UdYl) = 0. (26) 
At the interface ( y  = y 2  = l), the following conditions must hold: 
( a )  Both fluids move together with no vacuum layer between them; 

thus 
VdY2) - VO(Y2) = 0. 

UdYJ - UO(Y2) = 0. 

(27) 

(28) 

(b )  There is no slip between the fluids in the direction of flow; thus 

( c )  The shear stress must be continuous ; thus 

( d )  Because of surface tension, the normal stress is discontinuous. 
according to the relation 

where p ,  is the effective pressure caused by surface tension. If u is the 
surface tension coefficient and I, the radius of curvature of the interface, 
p ,  can be written as 

P T -  g'lIyg = - uu~19 

PT = u/lr,  

where 

the negative sign having been chosen because p ,  is to be positive when 
d2l;ldG2 is negative. The normal force equation can be rewritten as 

A t  injinity ( y  = y3  = a), the disturbance must vanish ; i.e. 

Vg(Y3) = 0, UO(Y3) = 0. (31). 
Equations (26) to (31) are the eight boundary conditions necessary for 
solving the system of two-fourth order differential equations given by (24) 
and (25). 

4. The secular equation 
Equations (13), (14) and (17) show that when y +  00, @&) and 

Q4(y)-+ rm. In order to satisfy the boundary conditions given in (31), 
it is necessary that in (25) 

K2 = K4 = 0, (32) 
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which when used with (19) allows the boundary conditions (26) to (31) to 
b e  rewritten as 

'1 $11 + '2 4 2 1  + '3 4 3 1  + '4 4 4 1  = O ,  

'1 4;1 + '2 4;1 + '3 4;3 + k'3 4il = 0, 

kl 4 1 2  + K2 4 2 2  + '3 4 3 2  + '4 4 4 2  - Kl @12 - K3 @32 = O, 

k1 'b;B + k2 &2 + &2 f '4 $12 - K1 @;7, - K3 = 0, 

(33) 

(34) 

(35) 

(36) 

S ( a 2 4 1 2  + 412) + k 2 ( u 2 4 2 2  + &2)+ 

+ '3(a2432 + 4,"2) + '4(u2$42 + 4i2) f 
Kl K3 - - (u2@12 + - - ( ~ 2 @ 3 2  + @[') = 0, (37) m m 

+ l ] R 4 , , - [ ( 1 - c ) R - i 3 ~ ] + ; ~ -  

i 

1 -+- w F ( 1 - c )  

+ 11 R422 - [( 1 - c)R - i3a]+L2 - - 4t2} + -+- 1 

1 

w F(1-c) U 

w F(1-c) 
+ 11 R432 - [( 1 - c)R - i3u]+i2 - -+- 

+k4{[ -+- w u2 F(1-c) 1 + 1]R442-[(1 -c)R-i3a]~$& - W. '+z2}  - 
- 5 { [ m + -l.Rrm@12 1 - [( 1 - c)Rrm - i3u]@i2 - i @:2} - 

m F(l -c)  U 

U 
- "([m+ G)]R~m@32-[(1 1 -c)Rrm-i3a]@iz - 
m 

where 411 = (bl(rl), 4 2 3  = 42(y3),  etc., and 
m = pl/pa ; r = pa/pl ; R = R~ ; F = G;/g6 ; w = pl 6 i?:10. (39) 

R, does not enter in the relationships of this section because it is clear, 
from (25) and (26), that 

R, = Ri rm. 

For the details of the derivation of (38), reference may be made to the 
author's thesis (Feldman 1955, Appendix A). 

Thus, the essential dimensionless parameters of the problem have 
been defined as a, R, c, m, Y ,  F and W, where F and W denote, respectively, 
the Froude and Weber numbers. It is seen that R, has disappeared from 
the problem as an explicit parameter. This seems to be in line with 
experimental results (Knuth 1954, pp. 362-363), which show that the 
inception point of unstable disturbances is independent of the gas-stream 
Reynolds number. 

If the preceding set of equations, (33) to (38), is to have a non-trivial 
solution for the k's and K's, the following relation, the so-called secular 
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equation, must hold : 

g,2= -+- [ F ( l  - c )  
Rdn2 - [( 1 - c)R - i 3 ~ ] & ~  - 

1 = 0, (40) 
- @b 

= 1,2,3,4; 
n = 1 , 3 ;  

i 
a . -q5:%, n = 1,2,3,4;  
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and for clarity, instead of using y in the liquid and gas, the variables ti and t ,  
were introduced. In (44) and (45), the lower limit of integrationiwas taken 
as y = 1 for convenience in later calculations. (For an alternative refer to 
discussion following (55)) Later on, many expressions will have to  be 
evaluated at y = y 2  = 1. With the choice made here, the calculation is 
simplified since several integrals vanish, i.e. +32, &, 4i2, 442, 4i2, & and 
4r2. In  (47) the lower limit was taken as infinity, because two of the boundary 
conditions required the solutions to vanish there: no other choice would 
have been satisfactory. The functions needed in (40) will now be written down : 
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We shall next change the determinant of (40) into a form more 

(a) Divide the last row by R. 

(b)  Multiply the 3rd, 4th and 6th columns by (GcR)~/~/ ’+;~ ,  (c&)’/~/’& 
and (aRrm2)1’2/’@iz respectively, where the accent to the left of a 
symbol means the leading term in the asymptotic expansion (aR % 1) 
of the corresponding function. 

convenient for calculation. The procedure is as follows : 

(c )  From (60), insert all the zeros for the terms that vanish. 

( d )  Multiply the 5th column by - 1, and rearrange the columns so that 
column 5 becomes 3, 3 becomes 4, and 4 becomes 5 .  

The result is then 

A1 v, 0 a1 

A2 v2 0 a2 

A, v, T ,  0 

A, v, T4 0 

A5 v5 T5 a5 

‘6 v6 T6 u6 

where the first three columns involve the 

(54) 

inviscid terms (except for the 
last row, which has terms of 0(1/R) and will be neglected’in comparison 
with the terms kept in the calculation), and the last three columns involve 
the viscous solutions. The term ‘ viscous solutions ’ refers to any of 43, 44, 
(D3, or their derivatives, regardless of where they are evaluated. The 
meaning of the symbols in (54) is given by the following relationships: 

A,=  [$ -+ -  F(1-c) 4 1 2  - (1 - c)& + i(3&2#;,  - r#y2)(LYR)-1, 

T3 = Olz, T4 = @iz, T5 = m-1(a2@12+@y2), 1 
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c3 = (aR~rn~)~’~@,,/’@,,”, ,  
c5 = m-1[a2(uRrm2)1~2@32/’@~2 + ( ~ R r m ~ ) ~ / ~ @ l ~ / ’ @ & ,  

c4 = ( a R ~ m ~ ) ~ ~ ~ @ ~ , / ’ @ , ” , ,  

It is worth remarking that the lower limit for the integrals in (44) and (45) 
could alternatively have been taken as zero instead of unity. This would 
have lead to a fourth-order determinant instead of the sixth-order one 
in (54). Each element of the alternative determinant would have been not 
only more complicated than the one of (54), but the clear distinction between 
viscid and inviscid solutions (of which use is made for the calculations of 
the neutral stability lines) would not have been possible. 

6.  Behaviour of the viscous solutions for uR 
Thus far, no restrictions of any kind have been made in the analysis. 

We will restrict the discussion to the case aR $ 1, this being sufficient 
to solve the problem. One of the major tasks is the evaluation of the 
integrals in (53). The only previous discussion of a similar integral is 
the one by Hopf (1914), who assumed uR < 1 ; thus his discussion is 
not suited to the present study. In order to find out how the neutral 
stability curve (i.e. for given m, r ,  F and W) behaves for large values of 
the parameter uR, it will be sufficient to keep only the terms of highest 
order in aR in the asymptotic expansion of the pertinent functions. AS 
will be shown later (following (71)), the case of interest for neutral stability 
(cf. (3)), is the one where c = c, < 1. A detailed description of the method 
used for obtaining the integrals, the order of magnitude of the errors 
involved, and the calculation of c $ ~ ~  as an example of the procedure used, 
is given in Appendix B of the author’s thesis. If uR $ 1, from (51) and (52) 
it may be assumed that 
q, 3 q(0) = a2(aR)-z13 - i (uR)lh N - i(aR)1/3c, 

‘zll = zl( 1) = a2(aR)+2/9 + i(uR)li3( 1 - c )  N i ( ~ l i ) l 1 ~ (  1 - c),  

1 
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bl = bll +blz(aR)-1/2 + O[(aR)1/4e+], 
b2 = b2, + bza(aR)-l12 + O[(~tR) l /~e+] ,  
b5 = b51(~R)"~ + b,, + o[(t~R)-l/~], 
b, = b,, + bs2(aR)-lI2 + b,,(aR)-l+ O[7aR)-3/2], 

The secular equation (54) can be expanded in terms of a sum of products 
of the viscid and inviscid terms. Equations (62) to (68) are then used for 
a e  purpose of determining the important terms to be kept in the final 
result. 
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7. The eagenvalue problem for uR -+ 00 

It can be shown that for uR --f co, the secular equation reduces to 

9 ( a ,  c, Y ,  m, F, W )  = 0, 

or 
( 1 - c ) u [ g ( u , r , m ) + r ] -  F( l  -c) (69) 

which, when solved for c, gives" 

(u2/W+1 - ~ m ) + 2 / ( ( u ~ / W + 1 - r m ) ~ + 4 u [ g ( u , r , m ) + r ] ( l - r ) / F }  
c =  1- 

2a[g(a ,  y ,  m) + r]  
9 

(70) 
1 

1 + (m/r)1/2 ' 
where 

the radicand being always positive, i.e. c is always real. This means that 
for R .+ 03, the $ow is neutrally stable?. Also, since for cases of interest 
rm < I ,  c is always less than unity as R + m. This is quite an important 
conclusion, since for finite Reynolds numbers, the computation is different, 
depending on whether c is less or more than unity. I t  will therefore be 
assumed, in all the work for finite Reynolds number, that c < 1. The 
final calculations will bear out this assumption. 

A different approach to the case of infinite Reynolds number would 
be to neglect viscosity at the outset, i.e. in the Orr-Sommerfeld equations. 
The differential equations then become of second order, and by relaxing the 
proper boundary conditions, the problem could again be solved. This 
has been done, and the equation obtained for c is the same as (70) except 
that the function g(u, r ,  m )  is not given by (71) but by 

g(u, r ,  m) = coth a, (72) 
which agrees with (71) only when m/r $1. 

The limiting processes used to obtain (71) and (72) were different. 
Therefore it is not surprising that these results are not identical. From 
a physical point of view, the disagreement is inacceptable. Although no 
physical explanation of the discrepancy has been found as yet, the dis- 
agreement is immaterial from the present standpoint because for the fluid 
of interest, viz. a liquid-gas combination, m/r >> 1 and the results agree. 

8. The case of jinite Reynolds number 

The fundamental equations for the neutral stability curve in the ctR-plane, 
for a given physical situation (i.e. for fixed gas-liquid density ratio r ,  

* The root with the negative sign in front of the radical can be proven to be an 
extraneous root introduced when solving (69). 

t It is worth remarking that for the case of ' inviscid Couette flow ' of a single' 
fluid the Orr-Sommerfeld equation has no non-trivial solution, while for two layers 
of fluids there is only this one non-trivial solution for the eigenvalue problem. I 
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liquid-gas viscosity ratio m, Froude number F, and Weber number W),  are 

each point on the curve having a particular wave velocity. The functions 
T ( u ,  c), S(a, c)  and X ( u ,  c )  are defined by 

9 ( u ,  c )  = - 2 4  1 - c) + [ecU(R, - V,) + 2 T6 sinh U] (;)"'+ 

48 F ( l  -c) I+ 2u ["E) 112 m+-+- 17 
9 ( u , c )  = - ~ 

(1 -c)l/2 4 r 

- [e-"(A, - V,) + 2T, sinh u] (:) - 112 48( 1 - 1 [5+41 (:)1'2] + 
tl 

[( V, - R,)eca + 2 T, cosh u] - 
+ r( 1 - c)l/2 

+coshu + 1 -~ 2u ( T , - A , ) [ - ~ -  " ( E )  1'2 sinh - u 
(1 - c)l/2 4 1 - c  r U 

' (75) (1 -c)l'Z u 
sinh u 

The solution of (73) for c as a function of a has to be obtained numerically*, 
because of the impossibility of solving explicitly for c or a in terms of the 
other. Once a pair of values of u and c is known, straightforward calculation 
leads to the value of (aR)lj2, it being possible to evaluate R immediately. 

A digression is permissible at this point in order to point out the meaning 
of Reynolds number R r  Rl in the present problem. Since the velocity 
profile is a linear function of distance, for given liquid physical properties 
R is proportional to the liquid flow rate, and therefore is a constant once 
the flow rate is specified, 

calculator using an 8-digit floating decimal system. 
* All the numerical work was carried out on an IBM card-programmed electronic 



358 S.  Feldman 

Now that a method for determining the neutral stability curve has been 
described, it is necessary to decide which region, on either side of it, is 
stable or unstable. The calculations indicate, as is reasonable to expect, 
that for a disturbance of a given wavelength, the flow is stable for Reynolds 
numbers smaller than a Reynolds number R,, corresponding to a neutral 
disturbance; and similarly the flow is unstable for R > R,. 

The results obtained from the present analysis, of which figure 3 is a 
typical example with F = W = 0, indicate that the shape of the neutral 
stability curves in the aR-plane is similar to the boundary-layer case*. 
The effect of varying the gas-liquid density ratio r could be stabilizing or 
destabilizing, while increasing the liquid-gas viscosity ratio m always 
tends to stabilize the flow, provided m is not small compared with unity. 

*The  reason for obtaining only one solution to the problem, and not two as 
Lock (1954) found, is that in the present case each fluid is stable by itself, and the 
only reason for the existence of instability is the discontinuity in the physical properties 
of the fluids. In Lock's case each fluid is probably also unstable. On the other 
hand, in the present treatment instability regions which do not extend to R = 03 
have not necessarily been eliminated ; this may occur when c > 1. The analysis' 
would have to be extended to this case in order to investigate this possibility. 
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For u -+ 0, the equation for the lower branch of the neutral stability 
curve is 

UR = const., (80) 

as can be derived analytically. The upper branch seems to have a nearly 
horizontal tangent for R -+ GO ; this was obtained numerically. 

The influences of non-vanishing gravity* or surface tension forces on 
the above results should be alike, since they enter as a sum in the secular 
relation (40). Figure 4 shows that for large Froude F and Weber numbers W, 

Fig Tves. 

gravity and surface tension destabilize the flow. Obviously, surface tension 
effects are negligible when the disturbance frequency is small, but become 
very important at large frequencies. The effect on the neutral stability line 
is in this case to raise the upper branch so that its asymptote for u % 1 is 

ulR = const., (81) 

which can also be obtained analytically. 

indicated in figure 1.  
* The gravitational field was assumed to act downwards in the flow configuration 
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1.0 10 
U 

Figure 5.  Wave velocity vs wave number for neutral stability. Gravity and surface 
tension forces are neglected. Liquid-gas viscosity ratio = 10. 

10' 
a 

I .o 10 

Figure 6. Rate of change of amplification factor with Reynolds number as a function 
of wave number and gas-liquid density ratio. Liquid-gas viscosity ratio = 10. 
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All the effects discussed thus far concern the stability of the flow, and 
the direction (left or right) in which the neutral stability curve moves in 
the uR-plane when the physical quantities are varied. 

There are two or more items to be discussed before the results of our 
numerical calculations are summarized. They are (u) the behaviour of the 
magnitude of the wave velocity ; (b) the amplification or damping rate of 
disturbances in the neighbourhood of the neutral stability line. 

With respect to (a ) ,  it is enough to mention that all waves travel at 
speeds less than the velocity of the liquid-gas interface, a typical case 
being given in figure 5. 

On the neutral stability curve, the imaginary part ci of the complex 
velocity c vanishes. It is possible, nevertheless, to compute the rate of 
change of c, with respect to Reynolds.number. The important result is 
that this is always a positive quantity which, as a function of a (figure 6), 
has a peak near the critical Reynolds number. This means that the curves 
ci = const., in the &-plane, would be packed close together when in the 
neighbourhood of the critical values of a and R. 

Since the quantities of greatest interest are the parameters corresponding 
to the critical value of the Reynolds number, the large number of calculations 
which we have made may suitably be summarized as follows. 

9. Values of critical quantities and discussion of results. Comparison with 

Since the physical case of interest is the one wher!: gravity and 
surface tension forces are small, detailed calculations were carried out 
for F = W = 00. The critical values are presented in figures 7 to 10, 
from which the following facts can be gathered: 

experiments 

(1) As m and Y + 1, the flow is completely stable. 

(2) For a given gas-liquid density ratio P ,  an increase in the liquid-gas 
viscosity ratio m always increases the stability, and decreases the amplification 
or damping in the region away from the neutral stability curve. 

(3) For very small P ,  the flow is completely stable. 

(4) For a given m, there is always a value of r for which the flow is most 

(5) As Y + 0, the wave number a tends to a value of 0.6 approximately, 
and the wave velocity c becomes 0.1 approximately. 

(6) For the special case of air and water at a temperature of 100°C 
and a pressure of one atmosphere ( m  = 10, r = 0-OOl), the value of the 
critical Reynolds number is 60 000. 

(7) The critical conditions depend for given physical properties only 
on the liquid flow rate. 

unstable. 

F.M. 2 B  
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The significance of the results quoted as items (1) and (2) can be 
understood in terms of the known universal stability of plane Couette flow 
(from now on abbreviated, as P.C.F.) between walls of arbitrary spacing. 
An explanation follows. 

In the special case when the two fluids have the same density and 
viscosity (equivalent to the case of a single fluid), the velocity profile becomes 
a single straight line. Item (1) shows the flow then to be universally stable, 
in agreement with the known result for P.C.F. ; a check on the analysis 
is thus obtained. 

I .o 

0-I 

r IO-= 

NOTE: CALCULATIONS CAN NO 

CORRECT FOR DOTTED 
S E C "  OFCURVES 

10 BE PROVEN TO BE 

0-' 
10 lo4 10 10' 

Rcril 
Figure 7. Critical Reynolds number. 

When the result quoted as item (2) is interpreted for the limiting case 
of a very viscous liquid, the motion is again always stable. The very viscous 
liquid could just as well be considered as a solid and this case again reduces 
to P.C.F. 

From item (2) and the above discussion, a result can be deduced which 
has not been obtained directly by any calculation. This is that, for an 
arbitrary density ratio, the flow is completely stabilized when m - t  0. 
The reason for stabilization is that this limiting case of the flow occurs 
when the gas becomes so viscous that it could be replaced by a solid wall, 
which again reduces to P.C.F. between two walls at a finite spacing. 
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Therefore, in figure 7 there would exist a curve for some small value of m 
that would be farthest to the left, and for smaller values of m the curves 
would again be displaced more and more to the right as the liquid-gas 
viscosity ratio is decreased. 

1.0 

10-1 

r 

10' 

104 
ld3 lo-' 10' 

CIcrit  

Figure 8. Critical wave number. 

Items (5) and (6) will now be compared with some experimenta1 
observations. Most experiments with liquid films have been carried out 
in horizontal round tubes where the liquid flows along the inner surface 
dragged by a high-speed turbulent gas. It should be kept in mind that 
while the gas layer is of infinite thickness in the theoretical model, the 
ratio of laminar sublayer thickness in the gas to liquid film thickness in the 
experiments was of the order of unity. 

The experimental neutral wavelength X observed by Knuth (1954) for 
all liquid flow rates was about 10 film thicknesses. Considering that 
M = 2~r/h, Knuth's findings check with the critical value of item (5 ) .  Since 
the wavelengths in the neighbourhood of the critical value are the most 
amplified, these might be the only ones visible in an experiment. Knuth 
might have observed these values, which, although seemingly neutral, 
could have been slightly amplified. 

2 B 2  
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(9) 
& R cril 

Figure 10. Critical values of the rate of change of amplification factor with Reynolds 
number. 
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Item (6) implies that for a liquid film 0.005 in. thick, the critical 
liquid-gas interface velocity is 100 ft/sec, which is one order of magditude 
larger than the values obtained from experiments in liquid films. This 
discrepancy would seem to indicate that the observed instability is not 
simply laminar instability of uniform shearing motion. The fact that the 
computed critical Reynolds number is much higher than the experimental 
values could be due to the fact that the velocity profiles of both fluids in 
the analysis were assumed to be straight lines. If curved profiles were used 
it is conceivable that the critical Reynolds number could decrease. This 
possibility is suggested by the change in the value of critical Reynolds. 

10- ' 

10- 

16 
I o3 I o4 lo6 

R c r i t  

Figure 11 .'. Influence of gravity and surface tension forces on critical Reynolds- 
number. 

number when going from plane Couette (Rctit = LO) to plane Poiseuille 
flow (Rcrjt = 11 560, based on the maximum velocity and width of the 
channel). Curvature in the velocity profile of the liquid could exist in 
the case of laminar flow when there is a pressure gradient in the, flow 
direction. One of the things that has not been accounted for in the present 
or suggested analysis is the effect of turbulence of the gas stream, which 
also possibly influences the stability of the flow. 
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Gravity and surface tension have a destabilizing effect (see figures 11 
and 12), as remarked in the discussion in $8. This influence of surface 
tension was observed by Kinney, Abramson & Sloop (1952, p. lo), the 
relative change in the critical Reynolds number being of the same order 
of magnitude (within a factor of at most 2) as the value found here 
analytically. 
’ 

Item (7) agrees with the experimental fact reported by Knuth that the 
ifi;ception point of instability is a function of the liquid flow rate, and 
independent of the gas flow rate. 

Before concluding, it will be helpful to try to gain some physical insight 
into the stability problem by looking at the energy of the disturbed motion. 
This will be done in Part 111. 

10. Accuracy of calculations 
The accuracy of,  our calculations, based upon the viscous functions 

given in $6, Part 11, is restricted by the fact that aR was assumed large. 
This was interpreted as meaning that in (61) the right-hand members are 
good approximations to the left-hand members, and permitted the use of 
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asymptotic methods. Terms of O[(aR)-l] were neglected when compared 
with terms of O [ ( E R ) - ~ / ~ ]  in the secular equation. A check on the assumption 
mentioned was done for each calculation of a point on the neutral stability 
curve. The result of this checking showed that the assumption was incorrect 
for small values of r ,  shown dotted on figure 7 only. Nevertheless, the 
trends in that region are probably correct. This is inferred by comparing 
the dotted sections with the curve for m = 50, which is valid over almost 
all of the regions shown: they seem to form a reasonable family. 

For small values of r ,  the last of equations (61) for zgl should be 
approximated by the first term and not by the second, as for larger values 
of r .  If this innovation were made, a valid calculation for the dotted part 
of figure 7 would then be possible. 

111. THE REYNOLDS SHEARING STRESS 

A different way of looking at the stability problem, due to Lin (1954), 
consists of following the history of the disturbance energy, which, for 
damping or amplification, changes as a result of the action of the Reynolds 
shearing stress rs*. It  is then enlightening to know its distribution across 
the stream. 

Foote & Lin (1950) have shown that 

and 

where zj is the distance or time average of the product uv, and 7 and 7' 
dicate complex conjugates of # and 4'. 

At the interface, for the viscous case, 
- -  
U(Z''r = ugvg (84) 

(85)  (7sd7sg)interface = PJPg = ' / r .  

The inviscid case 

Therefore (82) shows that 

from which it follows that the Reynolds stresses are zero across the flow. 
This means that there is no mechanism for transferring energy between 
the basic flow and the disturbance, i.e. any disturbance will just subsist, 
without damping or amplification. 

As can be seen, the method of this section is extremely useful, since 
the important result of $7  regarding stability has now been rederived in 
a few lines without any calculation. 

* The work done per unit volume per unit time by the basic flow is r dUldy 
(Schlichting 1950), and converts energy from the basic flow into the disturbance 
when dUldy > 0. 

The amplitude functions #J and @ for the inviscid case are real functions. 

(+$'-$+') = const. = 0, (86)  
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The viscous case 

is continuous across the layer where U(y)  = c,. 
equation (4) can be rewritten as (c is complex) 

We will start the study of this case by showing that the Reynolds stress 
The  Orr-Sommerfeld 

which, on multiplying by 7, subtracting its complex conjugate and regrouping 
yields 

d -  2c, U 1 + 1 2  i +iv&- 2Cr2+"T+ u4+6 
-($+'-?'+) = Iu-c;2 aR -t dY --( u - c  

). (88) 
p+ - 2.2+"4 + a444 

u- z. + 
Equation (88) can now be introduced into (83), and since U" = 0, we have 

M2+"+ + .4++ +i"+ - 2a2+"+ + .4++), - dT.5 dy = - 4R P e2ac, f ( + i " + - 2 u - c  u- r + 
which can be integrated across the layer where U = c, and remembering 
that in our case U = y ,  

d., = ( T d Y  = c+o - (Ts>u = c-o = [Tsl 

-- - e2aci t lim {[PF- 2cr2+"J + .4+& = ,[log E - log( - €)I + 
i 

4R E+O 

+[@"+-2a2J"++a4#&, = c[log(c-C+E)-log(c-C-E)]). (90) 
Since logE-log(-E) = _+i77(2n+1), n = 0, 1, 2, ..., 
equation (90), with c, = 0, gives for the jump in Reynolds stress 
the layer where U = r 

across 

[Ts] = & [ ~ ~ + ~ " b - 2 C C 2 ( ; i ; " ~ + b n + ) + 2 a 2 ~ ] [  ki77(2n+ I)]. (91) 

where a particular n should be chosen for the branch of the logarithm 
being used. (Note that the quantity in the first bracket on the right-hand 
side of (91) is real, and the quantity in the second bracket is purely imaginary.) 
Since [ T ~ ]  must be real, and p/4R f 0, we have at y = c 

p$ + pV+ - 2u2(+"$ + +y) + 2cr4& = 0. (92)  

Therefore [T,] = 0 at y = c, = c. (93) 
Lin (1954) has shown that the Reynolds stress in a viscous fluid grows 
positively and very rapidly with distance away from the wall in a very thin 
layer, and then stays about constant. 

We now have enough information to build the complete picture of stress 
distribution for the viscous case. Starting at the wall, the Reynolds stress 
is zero, and as we proceed outwards it grows at a rapid rate. It then levels 
off and since viscosity is not very important, (86) will be almost satisfied 
(i.e. T# = const.). There is no jump across the layer where U = c. As we 
get to the liquid-gas interface, the stress is discontinuous, the ratio of the 
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values on both sides of the discontinuity being given by (85). The stress 
on the gas side cannot be zero, since by (84) this would mean that the stress 
in the liquid is zero. Far away in the gas stream, the Reynolds stress must 
vanish. 

Lin (1954) found an important relationship in the theory of hydrodynamic 
stability in a very simple way. The principle used by him was to equate 
the stress in the fluid adjacent to the wall computed by two different methods, 
starting from the wall in one case, and from the main stream in the other. 
This method has not yet been made successful here, the reason being that 
the magnitude of the jump of stress across the interface is unknown, only 
the ratio being known. In  order to compute the jump, one would have 
first to compute the stress at the interface, on the gas side, by calculating 
the function a. 

Figure 13 shows qualitatively this stress distribution. 

This would destroy the simplicity of Lin’s method. 

0 

GAS 

INTERFACE - -  - 
Liauio -- - -  - - 

-c- - -- 
LAYER AT WHICH U=c - 

I 

- 
- -  - -- - -- - -- 

r/ / / / / / / / /  / / / / / / / /, , / / /  / / = =I 

Therefore, looking at the Reynolds stress in the present case was not 
as fruitful as in Lin’s case. It would nevertheless be interesting to find the 
quantitative distribution of stress for a self-excited disturbance and for a 
neutral disturbance. This would show whether most of the energy input 
into the disturbance comes from the gas or the liquid. From the functions 
presented in this paper, it would be possible to calculate the Reynolds 
stress for a neutral disturbance. The case of a self-excited disturbance 
is much more complicated, and the necessary amount of numerical work, 
as envisaged at the present time, is prohibitive. 

IV. CONCLUDING REMARKS 

The discrepancy between experiments on the stability of liquid films 
and the present theory is confined to the fact that the theoretical value of 
the critical Reynolds number is larger than the experimental one, all other 
quantities being in agreement. The results obtained here seem to indicate 
that a study of the hydrodynamic stability of two fluids with curved velocity 
profiles would be worth-while. Such a study might definitely settle the 
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question whether or not the large-scale disturbances observed in liquid-film 
cooling experiments are due to laminar instability. 

The  distribution of the Reynolds stress across the stream remains a 
problem of great importance to the physical understanding of hydrodynamic 
stability in the present example. 

The  model chosen for the analysis, although the simplest possible, has 
yielded a number of new and interesting results. The  most important 
conclusion to be drawn from this investigation is that a discontinuity of 
viscosity or density has a destabilizing effect on uniform shearing motion. 

This paper is based on the thesis submitted by the author in partial 
fulfilment of the requirements for the degree of Doctor of Philosophy at 
the California Institute of Technology, June 1955. The author wishes to 
express his gratitude to Professor W. D. Rannie, for suggesting this problem 
and for his critical guidance during the course of this investigation, and to 
Professor C. C. Lin for his very helpful suggestions and personal interest. 
The  author is also grateful to the Daniel and Florence Guggenheim 
Foundation and to the California Institute of Technology for making 
possible his continuation of graduate study through the grants, respectively, 
of a Fellowship in Jet Propulsion and a Graduate Tuition Scholarship 
during the 1953-54 and 1954-55 academic years. 
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